Confirm and Proceed
View More
View Less
System Message
An unknown error has occurred and your request could not be completed. Please contact support.
Reserved - Scan in at least 10 minutes before the beginning of the session.
This has been added to your Planner. Please note: This is not a reserved seat.
Waitlisted - You may be assigned a reserved seat if one becomes available.

Please be sure to check the session schedule for any repeats of this session. In order to search for repeats of this session, please type the Session ID into the search bar at the top of the page.
Personal Calendar
Conference Event
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Replies ()
New Post
Microblog Thread
Post Reply
Your session timed out.
Meeting Summary

AIM396-S - ML Best Practices: Prepare Data, Build Models, and Manage Lifecycle

Session Description

In this session, we cover best practices for enterprises that want to use powerful open-source technologies to simplify and scale their machine learning (ML) efforts. Learn how to use Apache Spark, the data processing and analytics engine commonly used at enterprises today, for data preparation as it unifies data at massive scale across various sources. We train models using TensorFlow, and we use MLflow to track experiment runs between multiple users within a reproducible environment. We then manage the deployment of models to production. We show you how MLflow can be used with any existing ML library and incrementally incorporated into an existing ML development process. This session is brought to you by AWS partner, Databricks.

Session Speakers
Additional Information
Artificial Intelligence & Machine Learning
300 - Advanced
Please note that session information is subject to change.
Session Schedule